農林漁牧網

您現在的位置是:首頁 > 漁業

水處理中什麼是生物膜?

2023-01-04由 青藍水處理 發表于 漁業

細菌菌落表面或什麼或什麼

生物膜法

是一種高效的廢水處理方法,具有汙泥量少,不會引起汙泥膨脹,對廢水的水質和水量的變動具有較好的適應能力,執行管理簡單等特點。生物膜法是使

微生物

附著在載體表面上並形成生物膜,當汙水流經載體表面時,汙水中的有機物及溶解氧向生物膜內部擴散。膜內微生物在有氧存在的情況下對有機物進行分解代謝和機體合成代謝,同時分解的代謝產物從生物膜擴散到水相和空氣中,從而使廢水中的有機物得以降解。

活性汙泥法

和生物膜法的區別不僅僅是微生物的懸浮與附著之分,更重要的是擴散過程在生物膜處理系統中是一個必須考慮的因素。在生物膜反應器中,有機汙染物、溶解氧及各種必須的營養物質首先要從液相擴散到生物膜表面,進而進到生物膜內部,只有擴散到生物膜表面或內部的汙染物才有可能被生物膜內微生物分解與轉化,最終形成各種代謝產物。另外,在生物膜反應器中,由於微生物被固定在載體上,從而實現了

SRT與HRT(水力停留時間)的分離,使得增殖速率慢的微生物也能生長繁殖。因此,生物膜是一穩定的、多樣的微生物生態系統。

水處理中什麼是生物膜?

1。 生物膜的形成原理

生物膜的形成過程是微生物吸附、生長、脫落等綜合作用的動態過程。

首先,懸浮於液相中的有機汙染物及微生物移動並附著在載體表面上;然後附著在載體上的微生物對有機汙染物進行降解,併發生代謝、生長、繁殖等過程,並逐漸在載體的區域性區域形成薄的生物膜,這層生物膜具有生化活性,又可進一步吸附、分解廢水中有機汙染物,直至最後形成一層將載體完全包裹的成熟的生物膜。

根據

Characklis、Liu等人的研究,微生物膜的形成通常經歷載體表面改良、可逆附著、不可逆附著、生物膜形成四個階段,具體描述如下:

微生物在載體上的掛膜可分為微生物吸附和固著生長兩個階段。載體加入水體以後,首先進入吸附期。由圖可見,有部分微生物和絲狀物質已經附著在載體表面,附著了較多物質的位置往往是載體的凹處,不容易被水流剪下的地方。此時懸浮液中的微生物大量增長,出現較明顯的一個汙泥層。

經過不可逆附著以後,微生物在載體表面獲得一個比較穩定的生長環境,在供氧和底物充足的情況下,吸附在載體上的汙泥中的微生物很快就開始生長。下圖為微生物在載體表面開始生長時的情景,由圖可見到活性很好的鐘蟲和累枝蟲。

隨著培養馴化時間的增長,在載體表面生長的生物膜也迅速增長,逐漸覆蓋整個載體表面,並開始增厚。但生物膜的生長並不均勻,在載體比較突出的地方,生物膜比較薄,而凹處則會長出相當繁盛的菌落,可見水力剪下對生物膜的生長具有重要的影響。在載體表面附著生長的微生物種類也很繁多,除了累枝蟲、鍾蟲外,還可觀察到絲狀菌、球菌、桿菌等,還有一些游泳性的細菌在活動。如下圖所示。隨著載體上附著了越來越多的生物膜,載體的表觀密度逐漸會下降,變得更輕,更容易流態化,同時在下降區的載體下降速度有所變慢。

水處理中什麼是生物膜?

2。 生物膜形成的影響因素

生物膜的形成與載體表面性質

(載體表面親水性、表面電荷、表面化學組成和表面粗糙度)、微生物的性質(微生物的種類、培養條件、活性和濃度)及環境因素(PH值、離子強度、水力剪下力、溫度、營養條件及微生物與載體的接觸時間)等因素有關。

2。1 載體表面性質

載體表面電荷性、粗糙度、粒徑和載體濃度等直接影響著生物膜在其表面的附著、形成。在正常生長環境下,微生物表面帶有負電荷。如果能透過一定的改良技術,如化學氧化、低溫等離子體處理等可使載體表面帶有正電荷,從而可使微生物在載體表面的附著、形成過程更易進行。載體表面的粗糙度有利於細菌在其表面附著、固定。

一方面,與光滑表面相比,粗糙的載體表面增加了細菌與載體間的有效接觸面積;另一方面載體表面的粗糙部分,如孔洞、裂縫等對已附著的細菌起著遮蔽保護作用,使它們免受水力剪下力的沖刷。

研究認為,相對於大粒徑載體而言,小粒徑載體之間的相互摩擦小,比表面積大,因而更容易生成生物膜。另外,載體濃度對反應器內生物膜的掛膜也很重要。

Wagner在用氣提式反應器處理難降解物廢水時發現,在載體質量濃度很低情況下,即使生物膜厚達295μm,還是不能達到穩定的去除率。但是,在載體濃度為20-30g/L時,即使只有20%的載體上有75μn厚的生物膜,反應器依然能達到穩定的(98%)去除率,COD負荷最高可達58kg/(m3·d)。

2。2 懸浮微生物濃度

在給定的系統中,懸浮微生物濃度反映了微生物與載體間的接觸頻度。一般來講,隨著懸浮微生物濃度的增加,微生物與載體間可能接觸的機率也增加。許多研究結果表明,在微生物附著過程中存在著一個臨界的懸浮微生物濃度;隨著微生物濃度的增加,微生物藉助濃度梯度的運送得到加強。

在臨界值以前,微生物從液相傳送、擴散到載體表面是控制步驟,一旦超過此臨界值,微生物在載體表面的附著、固定受到載體有效表面積的限制,不再依賴於懸浮微生物的濃度。但附著固定平衡後,載體表面微生物的量是由微生物及載體表面特性所決定的。

2。3 懸浮微生物的活性

微生物的活性通常可用微生物的比增長率

(μ)來描述,即單位質量微生物的增長繁殖速率。因此,在研究微生物活性對生物膜形成的最初階段的影響時,關鍵是如何控制懸浮微生物的比增長率。研究結果表明,硝化細菌在載體表面的附著固定量及初始速率均正比於懸浮硝化細菌的活性。Bryers等人在研究異養生物膜的形成時也得出同樣結果。影響懸浮微生物活性的因素主要有如下幾種。

(1)當懸浮微生物的生物活性較高時,其分泌胞外多聚物的能力較強。這種粘性的胞外多聚物在細菌與載體之間起到了生物粘合劑的作用,使得細菌易於在載體表面附著、固定;

(2)微生物所處的能量水平直接與它們的增長率相關。當盧增加時,懸浮微生物的動能隨之增加。這些能量有助於克服在固定化過程中微生物載體表面間的能壘,使得細菌初始積累速率與懸浮細菌活性成正比。

(3)微生物的表面結構隨著其活性的不同而相應變化。Herben等人研究發現,懸浮細菌活性對細菌在載體表面的附著固定過程有影響,而且,細菌表面的化學組成、官能團的量也隨細菌活性的變化有顯著變化。同時,Wastson等人的研究表明,細胞膜等隨懸浮細菌活性的變化而有顯著變化。細菌表面的這些變化將直接影響微生物在載體表面的附著、固定。因此,通常認為,由懸浮微生物活性變化而引起的細菌表面生理狀態或分子組成的變化是有利於細菌在載體表面附著、固定的。

(4)微生物與載體接觸時間。微生物在載體表面附著、固定是—動態過程。微生物與載體表面接觸後,需要一個相對穩定的環境條件,因此必須保證微生物在載體表面停留一定時間,完成微生物在載體表面的增長過程。

水處理中什麼是生物膜?

(5)水力停留時間(HRT)。HeUnen等人認為,HRT對能否形成完整的生物膜起著重要的作用。在其他條件確定的情況下,HRT短則有機容積負荷大,當稀釋率大於最大生長率時,反應器內載體上能生成完整的生物膜。刊huis等人的試驗證明了這種觀點。在COD負荷為2.5kg/(m3·d),HRT為4h時,載體上幾乎沒有完整的生物膜,而水力停留時間為1h時,在相同的操作時間內幾乎所有的載體上都長有完整的生物膜,且較高的表面COD負荷更易生成較厚的生物膜,即COD負荷越高,生物膜越厚。周平等人也透過試驗證明了較短的水力停留時間有利於載體掛膜。

(6)液相pH值。除了等電點外,細菌表面在不同環境下帶有不同的電荷;液相環境中,pH值的變化將直接影響微生物的表面電荷特性。當液相pH值大於細菌等電點時,細菌表面由於氨基酸的電離作用而顯負電性;當液相pH值小於細菌等電點時,細菌表面顯正電性。細菌表面電性將直接影響細菌在載體表面附著、固定。

(7)水力剪下力。在生物膜形成初期,水力條件是一個非常重要的因素,它直接影響生物膜是否能培養成功。在實際水處理中,水力剪下力的強弱決定了生物膜反應器啟動週期。單從生物膜形成角度分析,弱的水力剪下力有利於細菌在載體表面的附著和固定,但在實際執行中,反應器的執行需要一定強度的水力剪下力以維持反應器中的完全混合狀態。所以在實際設計執行中如何確定生物膜反應器的水力學條件是非常重要的。